Application for Authorization Class B Biosolids Beneficial Use Sites

MOQ-12-01 and 02

Division of Surface Water Application for Authorization Class B Beneficial Use Sites

Form BUA-1

Biosolids Treatment Works Information

Treatment works name: Ringler Energy, LLC					
Ohio NPDES permit #: 4IN00204*AD		County:	Morrow		
Mailing address: 2881 County Road 156					
City: Cardington	ardington State: OH		Zip: 4315		
Operator of record: Bruce Bailey, Vice Preside	nt of Technical A	ffairs			
Telephone number: 216-986-9999					
Email address (if available): bbailey@quasare	3.00m				

Certification Statement

- 1. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.
- I have read and understand Chapter 3745-40 of the Ohio Administrative Code (OAC) and I agree to beneficially use biosolids in accordance with all applicable beneficial use requirements and restrictions established in Chapter 3745-40 of the Ohio Administrative Code.
- I agree to only beneficially use biosolids that have satisfied a pathogen reduction alternative and a vector attraction reduction option and have metals concentration below the pollutant ceiling concentrations as established in Chapter 3745-40 of the Ohio Administrative Code.
- I agree to maintain all applicable records established in Chapter 3745-40 of the Ohio Administrative Code.

Signature

9 / 15 / 15

Owner Consent for Beneficial Use

Beneficial use site o	wner: Denton Farm	ns by Donald R	. O . is					
Mailing address: 2577 Co. Rd. NS								
City: CARDING	Ton	State: OH 10	Zip: U3315					
Telephone number:	419-210-416	•						
Email address:								

Certification Statement

- 1. I agree to allow biosolids generated by the treatment plant identified on Form BUA-1 to be beneficially used on my property at agronomic rates.
- 2. I agree to allow federal, state and local regulatory staff access to the beneficial use site for the purposes of inspecting and authorizing the beneficial use site, beneficially using biosolids, and collecting and analyzing samples from the beneficial use site. I reserve the right to ask the above parties for proper identification at any time.
- 3. I certify that I am holder of legal title to the property described on application form BUA-5, or am authorized by the holder to give consent for the land application of biosolids, and that there are no restrictions to the granting of consent under this form.

Oeral R Ooter <u>8 / 30 / 15</u>
Signature Date

For purposes of this form, "beneficial use site owner" means the person who owns the legal rights to the proposed beneficial use site. In the event the owner of the beneficial use site changes, Form BUA-2 must be revised and resubmitted to Ohio EPA.

Ohio EPA Application for Authorization (1/15)

Form BUA-2 Page 2 of 6

Division of Surface Water Application for Authorization: Class B Beneficial Use Sites

Beneficial Use Site Operator Consent for Beneficial Use

Beneficial use site	perator: Denton F	forms by Don	ALD R. Deston
Mailing address:	asm Co. Ra	N.5	
City: CARDING		State: ON 10	Zip: 43315
Telephone number		4	
Email address:		Yahoo. Com	

Certification Statement

I agree to be responsible for complying with all applicable beneficial use requirements established in Chapter 3745-40 of the Ohio Administrative Code.

00-005	2000	/_30/_15	Ř.
Signature		Date	

For purposes of this form, beneficial use site operator means the person who plants, grows, harvests or otherwise manages feed crops, fiber crops, food crops or pasture land on the proposed beneficial use site. In the event the operator of the beneficial use site changes, Form BUA-3 must be revised and resubmitted to Ohio EPA.

Ohio EPA Application for Authorization (1/15)

Form BUA-3

Beneficial User Information

Beneficial user: Ringler Energy, LLC	>	
Contact person: Bruce Bailey, VP of	Technical Affairs	
Mailing address: 5755 Granger Rd.	Suite 320	
City: Independence	State: Ohio	Zip: 44131
Telephone number: (216) 986-9999		
Email address: bbailey@quasareg.c	om	

Certification Statement

I agree to be responsible for complying with all applicable beneficial use requirements established in Chapter 3745-40 of the Ohio Administrative Code.

For purposes of this form, the beneficial user means the person who sprays or spreads Class B biosolids onto the surface of the beneficial use site, injects below the surface of the beneficial use site, or incorporates into the soil of the beneficial use site, for the purpose of providing an agronomic benefit.

Beneficial Use Site Information

Ohio EPA Site I.D. (Ohio EPA Use Only)

Field site I.D.: MOQ-12-01						
Beneficial	use site location: 0.35	miles S. of W	/aldo-Fultoi	n Rd, W of Ki	lbourne-Cardington Rd.	
County: M	orrow		Township	: Lincoln and	d Westfield	
Latitude: 4	0°26'49.41"N		Longitud	e: 82°54'41.2	0"W	
Total acre	age proposed for bene	ficial use: 45	5.6			
Type of be	eneficial use to be perf	ormed:	Ground s	lope percen	t:	
Surface application Injection or immediate incorporation			Less than 15% ■ 15% to 19.9% □ Greater than 20% □			
Soil pH (s.u): 6.5		Soil phos	Soil phosphorus (mg/kg): 19.9			
			Bray Kurtz P1 Mehlich 3			
Type of cr	ops to be grown:	Crop	Type Expected Yield			
		Corn	180 bu			
		Soybeans		60 bu		
		Wheat				
		Pasture				
		Hay				
		Other:				
Soil Types	\ -					
Soil Unit				Hydrologic	Flooding Frequency	
Symbol	Soil Uni	it ivame		Soil Group	Class	
Blg1A1	Blount silt loam, ground moraine, 0-2% slopes			D	None	
Blg1B1	Blount silt loam, ground moraine, 2-4% slopes		D	None		
Gwg1B1	Glynwood silt loam, ground moraine, 2-6%		, 2-6%	D	None	
	slopes					
Mf	Milford silty clay loam			C/D	None	
Pm	Pewamo silty clay loam	1		C/D	None	

Division of Surface Water Application for Authorization: Class B Beneficial Use Sites

Applicable isolation distances:			
Тур	e of Iso	lation Distance	
Surface waters of the state		Sinkhole/UIC class V drainage	
Occupied building		Private potable water source	十一十
Medical care facility			
) bossed		
Are any endangered species or enda site?	angered	d species habitats located on the benefici	al use
	Ye	s No	
If "Yes" is marked, list the types of enda	angered	I species or endangered species habitat:	
Have biosolids been beneficially use	ed on th	ne site since July 20, 1993?	
	Ye	s No	
If "Yes" is marked, list the biosolids ge	nerators	•	
Generator		NPDES permit No. Year of Beneficial Use	
The application must also include all of	the fells	owing:	
The application must also include all of	the folio	owing.	
beneficial use site from the restablished in Chapter 3745-40	he prop eneficia nearest of the O	osed beneficial use site. al use site that clearly identifies the entrance road and all applicable isolation distand Phio Administrative Code.	ces as
 A frequency flood class map of t An aerial map of the proposed beneficial use site from the restablished in Chapter 3745-40 	eficial us he prop peneficia nearest of the O	se site. sosed beneficial use site. al use site that clearly identifies the entrance road and all applicable isolation distand	ces

Ohio EPA Application for Authorization (1/15)

beneficial use site with all roads labeled.

A copy of the most recent soil test results identified in this form.

Form BUA -5

Denton MOQ-12-01 Total Acreage: 45.6 Acres

) 150 300 600 Feet

--- Waterways

33ft Water Buffer


100ft Res Buffer 300ft Res Buffer

Residences

Denton MOQ-12-01 Total Acreage: 45.6 Acres

0 150 300 600 Feet

---- 5ft Contours

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

⊗
Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot
Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 27, 2012—Mar 10, 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Morrow County, Ohio (OH117)								
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI					
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	4.7	10.7%					
Blg1B1	Blount silt loam, ground moraine, 2 to 4 percent slopes	4.8	10.8%					
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	15.6	35.1%					
Mf	Milford silty clay loam	2.8	6.3%					
Pm	Pewamo silty clay loam	16.4	37.0%					
Totals for Area of Interest		44.4	100.0%					

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

Not rated or not available

Streams and Canals

Interstate Highways

Aerial Photography

MAP LEGEND

Water Features

Transportation

Rails

US Routes

Major Roads

Local Roads

ينين

Background

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Rating Polygons

0 - 25

50 - 100

100 - 150

25 - 50

150 - 200

> 200

Not rated or not available

Soil Rating Lines

0-25 میرسمبر

× × 25 - 50

*** *** 50 - 100

× × 100 - 150

200 - 150 سيمسر

> 20 ×

Soil Rating Points

0 - 25

25 - 50

50 - 100

100 - 150

150 - 200

> 200

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morrow County, Ohio
Survey Area Data: Version 13, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 27, 2012—Mar 10, 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Depth to Any Soil Restrictive Layer (MOQ-12-01)

Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	99	4.7	10.7%
Blg1B1	Blount silt loam, ground moraine, 2 to 4 percent slopes	94	4.8	10.8%
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	86	15.6	35.1%
Mf	Milford silty clay loam	>200	2.8	6.3%
Pm	Pewamo silty clay loam	>200	16.4	37.0%
Totals for Area of Inter	est		44.4	100.0%

Rating Options—Depth to Any Soil Restrictive Layer (MOQ-12-01)

Units of Measure: centimeters

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified

Tie-break Rule: Lower Interpret Nulls as Zero: No

Hydrologic Soil Group (MOQ-12-01)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) С Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Not rated or not available Enlargement of maps beyond the scale of mapping can cause Α misunderstanding of the detail of mapping and accuracy of soil line Water Features A/D placement. The maps do not show the small areas of contrasting Streams and Canals 1000 soils that could have been shown at a more detailed scale. В Transportation B/D Rails *** Please rely on the bar scale on each map sheet for map С measurements. Interstate Highways C/D **US Routes** 68900F Source of Map: Natural Resources Conservation Service D Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads 300,935 Soil Rating Lines Background Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Aerial Photography distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014 Not rated or not available Soil map units are labeled (as space allows) for map scales 1:50,000 Soil Rating Points or larger. A/D Date(s) aerial images were photographed: Feb 27, 2012—Mar 10, 2012 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group (MOQ-12-01)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	D	4.7	10.7%
Blg1B1	Blount silt loam, ground moraine, 2 to 4 percent slopes	D	4.8	10.8%
Gwg1B1	Glynwood silt loam, ground moraine, 2 to 6 percent slopes	D	15.6	35.1%
Mf	Milford silty clay loam	C/D	2.8	6.3%
Pm	Pewamo silty clay loam	C/D	16.4	37.0%
Totals for Area of Inter	est	,	44.4	100.0%

Rating Options—Hydrologic Soil Group (MOQ-12-01)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Soil Analysis Report

FARMS DENTON

Farm DFHUM

Received: 29-Jul-15

Reported: 27-Aug-15

CENTRAL OHIO FARMERS COOP/MONNET 1477 STATE ROUTE 294 00111492 GREGG BURRIS

Lab Number	899710	899649	899656	899654	899641	899653
Field	DFHUM	DFHUM	DFHUM	OFHUM	DFHUM	DFHUM
Sample No.	13	14	15	16	17	18
C.B.C.	7.6	14.7	11.6	13.3	10.5	11.1
Org Matter	2.3	4.1	2.3	2.4	3.1	2.3
Scil pH	5.5	6.4	6.9	6.7	6.6	7.2
Lime Index	68	69	70	68	76	70
P lbs/ac	39	96	48	35	51	23
K lbs/sc	228	320	233	228	260	200
Ca lbs/ac	154€	4248	3681	3008	3246	3452
Mg lbs/ac	257	597	517	497	466	532
5048 lbs/ac						
B lbs/ac						******************************
Cu lbs/ac						
Mn lbs/ac					******	
Zn lbs/ac						
Ca Sat'n.	51 🛊	72 *	79 8	61 %	77 %	78 %
Mg Sat'n.	14 %	17 %	18 %	17 %	19 %	20 %
K Sat'n.	4 8	3 *	3 %	2 %	3 %	2 %
Base Sat'n.	69 %	92 %	100 %	80 %	100 %	100 %
Ca/Mg	3.6	4.3	4.3	3.6	4.0	3.9
Mg/X	3.7	6.1	7.2	7.2	6.1	8.7
Na lbs/ac				•		
Fe						
SS mS/cm						
lbs/ac	***************************************					
NO3N ppm						
NH4-N ppm	<u> </u>					
Pct. Sand					•••••••••••	
Pct. Silt						
Pct. Clay						
Texture						
aanaan aa ah	ecceseran en	aaraanin aanaa aa aa aa ah aa ah aa aa aa aa aa ah aa aa	ratur array a cara rangaran array a falla a cara a car	and a commence of the commence	a a anala a a a a a a a a a a a a a a a	continue continue and a continue

Soil Analysis Report

FARMS DENTON

CENTRAL OHIO FARMERS COOP/MONNET 1477 STATE ROUTE 294

00111492 GREGG BURRIS

Farm DFHUM

Received: 29-Jul-15

Reported: 27-Aug-15

Lab Number	899644	899642	899650 DFHUM	899646 DFHUM	899655 DFHUM	899711 DFHUM	899657 DFHUM	899647 OFHUM	899652 DFHUM	899643 DFHUM	899648 OFHUM	89964 OFHUN
Field Sample No.	DFHUM 1	DFHUM 2	urnum	0rnom 4	5	6	7	8	\$	10	11	1:
C. B. C.	8.9	8.7	9.1	11.3	13.7	10.7	12.5	11.3	12.1	9.2	11.6	7.9
La	2.5	2.6	2.3	2,8	3.8	2.8	3.0	3.1	1.9	2.7	2.8	2.2
Org Matter		6.2	6.4	6.7	6.0	6.7	6.9	6.8	6.1	6.6	6.4	8.4
Soil pH	5.5	* · 4 70	70	69	67	70	70		66	70	69	70
Lime Index	70 43	50	36		40	33	36	34	26	34	39	24
P lbs/ac		248	347	259	276	229	230	228	179	200	254	172
K lbs/sc	229	2605	2866	3214	3163	3338	4058	3548	2264	2890	3121	2454
Ca lbs/ac	2817	445	398	430	437	S14	508	508	347	419	554	374
Wg lbs/ac	390	% % X	226	* 3 %	90.27	243		.2.00		3 8 9		
9048 lbs/ac					a casaca con contrator e e est en esc					.		
B lbs/sc												
Cu lbs/ac									3 1			
Mn lbs/ac									<u>I.</u> .			
Zn lbe/ac	20.0		200	73. %	58 %	78 %	81 %	79 %	4.7 .	79 %	67 %	78
Ca Sat'n.	79 %	75 %	79 %		13 %	20 N	37 V	19 %	12 8	19 %	20 %	20
Mg Satin.	18 \$	21 %	18 %	16 %:	3 %	av »	2 %	3 %	2 %	3 %	3 %	3
X Sat'n.	3 %	4 *	4 %	3 %.			180 %	100 %	61 %	100 %	90 %	100
Base Sat'n.	100 %	100 %	108 %	90 %	73 *	100 %					3.3	3.9
Ca/Ng	4,3	3.5	\$3 	4.3	1.3	3.9	4,8	7.3	3.9	4,i 8,8	7.2	7.1
x 3/K	5 . 6	5.8	\$.3	5.4		7,3				6.0	2.26	
Na lbs/ac												
Fe												
SS mS/cm	. we was serve a construction					and the second second second second			a an area and a second			
lbs/ac				£ 4 *								
NO3N ppm												
NH4-N ppm							:					
Pct. Sand												
Pot. Silt												
Pot. Clay												
Texture												

Beneficial Use Site Information

Ohio EPA Site I.D. (Ohio EPA Use Only)

Field site I.D.: MOQ-12-02						
Beneficial use site location: NW Corner of Pompey Rd. and Prospect Mt. Vernon Rd.						
County: Morrow			Township: Peru			
Latitude: 40°25'29.11"N			Longitude: 82°54'7.96"W			
Total acreage proposed for beneficial use: 45.6						
Type of beneficial use to be performed: Ground s				lope percent:		
Surface application Injection or immediate incorporation			Less than 15% 15% to 19.9% Greater than 20%			
Soil pH (s.u): 6.1 Soil pl			Soil phos	Soil phosphorus (mg/kg): 27.5		
Bedrock depth (feet): >3ft			Bray Kurtz P1 Mehlich 3			
Type of crops to be grown: Crop			Туре	ype Expected Yield		
		Corn	180 bu			
		Soybeans		60 bu		
		Wheat				
		Pasture				
Hay		-				
Other:		Other:				
Soil Types:						
Soil Unit	Soil Unit Name			Hydrologic	Flooding Frequency	
Symbol			Soil Group	Class		
Blg1A1	Blount silt loam, ground moraine, 0-2% slopes		D	None		
Blg1B1	Blount silt loam, ground moraine, 2-4% slopes		D C/D	None		
Pm	Pewamo silty clay loam			C/D	None	

Division of Surface Water Application for Authorization: Class B Beneficial Use Sites

Applicable isolation distances:						
	Type of Isola	ation Distance				
Surface waters of the state		Sinkhole/UIC class V drai	nage			
Occupied building		Private potable water sou				
Medical care facility			Records			
Are any endangered species or site?	endangered	species habitats located	d on the beneficial use			
	☐ Yes	No No				
If "Yes" is marked, list the types of endangered species or endangered species habitat:						
Have biosolids been beneficiall	y used on the	e site since July 20, 1993	3?			
	U Voo	No.				
	☐ Yes	No No				
If "Yes" is marked, list the biosolids generators and years beneficial use occurred:						
Generator		NPDES permit No.	Year of Beneficial Use			
The second state is a least of						
The application must also include	all of the folio	wing:				
 A soil map of the proposed A frequency flood class ma An aerial map of the propobeneficial use site from established in Chapter 374. A vicinity road map at or beneficial use site with all research 	p of the propo sed beneficial the nearest 5-40 of the Oh near the tow	esed beneficial use site. I use site that clearly ident road and all applicable nio Administrative Code.	isolation distances as			

A copy of the most recent soil test results identified in this form.

Ohio EPA Application for Authorization (1/15)

Form BUA -5

150 300

600 Feet

Denton MOQ-12-02 Total Acreage: 115.6 Acres

100ft Res Buffer

300ft Res Buffer

Waterways

33ft Water Buffer

Denton MOQ-12-02 Total Acreage: 115.6 Acres

0 150 300 600 Feet

---- 5ft Contours

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

⊗
Blowout

Clay Spot

Closed Depression

Gravelly Spot

Landfill

A Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

🐉 Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Very Stony Spot

Wet Spot

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morrow County, Ohio
Survey Area Data: Version 13, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 27, 2012—Mar 10, 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Morrow County, Ohio (OH117)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	47.9	41.2%		
Blg1B1	Blount silt loam, ground moraine, 2 to 4 percent slopes	15.1	13.0%		
Pm	Pewamo silty clay loam	53.4	45.9%		
Totals for Area of Interest		116.5	100.0%		

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If

Not rated or not available

Streams and Canals

Interstate Highways

Aerial Photography

MAP LEGEND

Water Features

Transportation

Rails

US Routes

Major Roads

Local Roads

ينين

Background

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Rating Polygons

0 - 25

25 - 50 50 - 100

1 ...

150 - 200

100 - 150

> 200

Not rated or not available

Soil Rating Lines

0-25 ميرسر

× × 25 - 50

*** *** 50 - 100

≠ ≠ 100 - 150

200 - 150 - محييسر

> 20 × سيسم

Soil Rating Points

0 - 25

25 - 50

50 - 100

100 - 150

150 - 200

> 200

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Morrow County, Ohio
Survey Area Data: Version 13, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 27, 2012—Mar 10, 2012

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Depth to Any Soil Restrictive Layer (MOQ-12-02)

Depth to Any Soil Restrictive Layer— Summary by Map Unit — Morrow County, Ohio (OH117)					
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI	
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	99	47.9	41.2%	
Blg1B1	Blount silt loam, ground moraine, 2 to 4 percent slopes	94	15.1	13.0%	
Pm	Pewamo silty clay loam	>200	53.4	45.9%	
Totals for Area of Interest			116.5	100.0%	

Rating Options—Depth to Any Soil Restrictive Layer (MOQ-12-02)

Units of Measure: centimeters

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified

Tie-break Rule: Lower
Interpret Nulls as Zero: No

Hydrologic Soil Group (MOQ-12-02)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

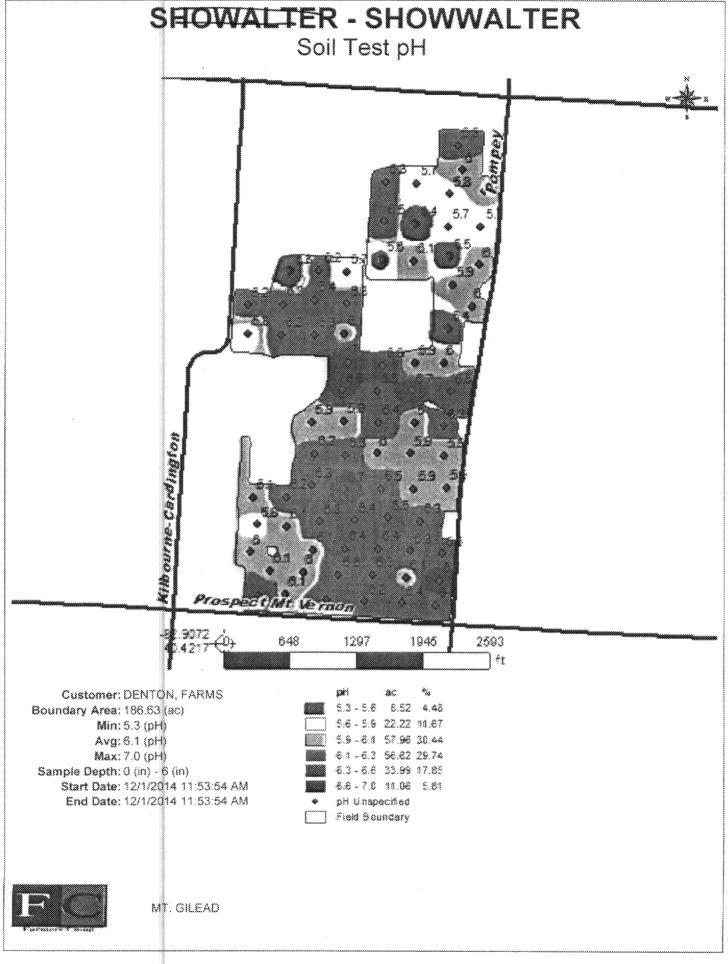
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

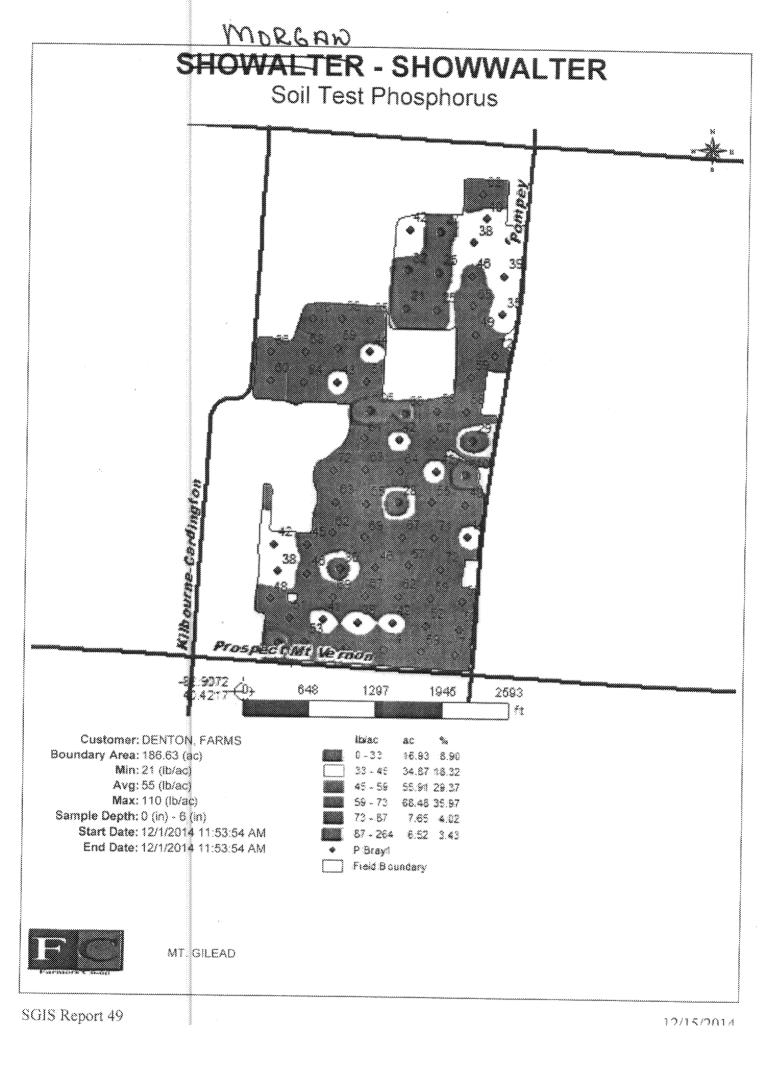
MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Area of Interest (AOI) С Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Not rated or not available Enlargement of maps beyond the scale of mapping can cause Α misunderstanding of the detail of mapping and accuracy of soil line Water Features A/D placement. The maps do not show the small areas of contrasting Streams and Canals 1000 soils that could have been shown at a more detailed scale. В Transportation B/D Rails *** Please rely on the bar scale on each map sheet for map С measurements. Interstate Highways C/D **US Routes** 68900F Source of Map: Natural Resources Conservation Service D Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads 300,935 Soil Rating Lines Background Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Aerial Photography distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Morrow County, Ohio Survey Area Data: Version 13, Sep 19, 2014 Not rated or not available Soil map units are labeled (as space allows) for map scales 1:50,000 Soil Rating Points or larger. A/D Date(s) aerial images were photographed: Feb 27, 2012—Mar 10, 2012 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group (MOQ-12-02)


Hydrologic Soil Group— Summary by Map Unit — Morrow County, Ohio (OH117)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
Blg1A1	Blount silt loam, ground moraine, 0 to 2 percent slopes	D	47.9	41.2%	
Blg1B1	Blount silt loam, ground moraine, 2 to 4 percent slopes	D	15.1	13.0%	
Pm	Pewamo silty clay loam	C/D	53.4	45.9%	
Totals for Area of Interest			116.5	100.0%	

Rating Options—Hydrologic Soil Group (MOQ-12-02)

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified


Tie-break Rule: Higher

MORGAN

SGIS Rannet 37

12/15/2014

